
Abstract-Characteristic frequencies of surface EMG power 
spectrum have been used in the past as indicative of motor unit  
(MU) recruitment, since they are rather insensitive to changes of 
MU firing rates and thus they should remain constant when only 
rate coding is used to modulate muscle force. However, this 
speculation h as not been yet validated b y simulated and 
experimental data. In this paper, a model of surface EMG signal 
generation and d etection is used to simulate EMG signals 
detected during linearly increasing force contractions. Different 
MU control strategies (corresponding to different ways for force 
generation b y recruitment and rate c oding) are simulated. A 
number of simulations are performed to study the e ffect of 
random distribution of MUs in the muscle’s cross-section upon 
the surface EMG. The results are compared with those obtained 
analyzing the EMG signals detected experimentally during 
linearly increasing force c ontractions of t he biceps brachii 
muscle in 10 subjects. Results show that the volume conductor 
properties may act as confounding factors which may mask any 
relationship b etween characteristic spectral frequencies and 
conduction velocity as a size principle parameter. It is concluded 
that more advanced signal processing techniques which aim at 
the analysis of single MU activity are re quired for the surface 
EMG based assessment of central nervous s ystem control 
strategy.    
Keywords -  rate coding, surface electromyography, motor unit 
recruitment, EMG spectral analysis, muscle fiber conduction 
velocity 

 
I. INTRODUCTION 

 

Many past studies were devoted to clarify the 
relationships between global surface EMG variables and the 
muscle contraction properties in order to extract information 
of physiological i nterest from t he analysis of the surface 
EMG signal. It has been established that the value and rate of 
change of spectral variables and CV during sustained 
isometric constant force contractions is indicative of muscle 
fatigue [12] and may be correlated with MU type [14]. It has 
also been shown, both theoretically [10] and experimentally 
[1], that, during fatiguing isometric c onstant force 
contractions, CV and mean or median spectral frequency 
(MNF and MDF) of the surface EMG signal are highly 
correlated, MNF and MDF reflecting mainly (but not only) 
the changes in CV of the active MUs.  

A few more contradictory studies address the possibility 
of investigating central nervous s ystem (CNS) control 
strategies by surface EMG. It i s well known that CNS uses 
two v ariables for the c ontrol of muscle force, the 
recruitment/derecruitment of MUs and the modulation of 
their firing rates (rate c oding). These two mechanisms of 
force control are present i n different proportion in different 
muscles [8]. It has been speculated that t he c haracteristic 

frequencies of the surface EMG power spectrum should 
reflect the recruitment of new, progressively larger and faster 
MUs, increasing until the end of the recruitment process and 
maintaining a constant value when only rate coding is present 
[2]. This hypothesis is based on two theoretical 
considerations: 1) the CV of a single MU action potential 
(MUAP) is scaling the power spectrum of that MUAP [10] 
and 2) the firing rate of a MU has a negligible impact on the 
frequency content of the surface EMG signal [9]. These two 
observations are valid when the MU pool i s s table but it i s 
not clear within which approximation they can be considered 
valid du ring non-constant force c ontractions. In particular, 
the effect of the recruitment of a new MU on MNF and MDF 
is not clear since the contribution of a MUAP to the surface 
EMG power spectrum depends on the location of the MU in 
the muscle. The volume conductor acts in fact as a low pass 
filter whose characteristics are related to the MU depth and to 
the properties of the subcutaneous tissue layers. Although a 
large number of studies aimed in the past at the determination 
of a relationship between EMG power spectrum (or its 
characteristic frequencies) and force, it is not yet clear which 
central m echanisms are reflected by the surface EMG 
variables. 

It i s the purpose of this paper to investigate the 
possibilities and limitations of the use of global surface EMG 
variables as indicators of MU recruitment strategies. The 
work is divided in a model based and an experimental 
approach which are strongly interrelated. 

 
II. METHODOLOGY 

 
A. Simulation model 

We recently proposed an accurate and fast model for the 
simulation of the surface EMG signal [5]. The model 
simulates synthetic MUAPs generated by finite length fibers 
and detected by surface electrodes with physical dimensions. 
The volume c onductor is an anisotropic and non-
homogeneous medium constituted by muscle, fat and skin 
tissues [4] (Fig. 1a). The simulated signals were detected by 
the c onfiguration proposed by Broman et al. [3], with 
interelecrode distance of 10 mm and bar electrodes 5 mm 
long, 1 mm diameter. The detection probe was located at the 
middle between the center of the innervation zone and of the 
tendon region of a number of MUs having mean semi-length 
(in both directions) of 65 mm. The number of fibers of each 
MU varied between 50 and 450 and the MU fiber density was 
20 fibers/mm2 [6]. The territory of the MUs was assumed to 
be c ircular and the fiber density in the muscle was 200 
fibers/mm2. Sixty-five MUs have been simulated in each 
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trial. The recruitment t hreshold RTE (to b e interpreted as 
recruitment i nstant during a linear r amp isometric 
contraction) of each MU has been computed as suggested in 
[6] with the following exponential rule (Fig. 1b): 

 
RTE(i) =  eai = eln (RR) i / n  = RRi / n          i=1,2,…,n                   (1) 

 
where i is an index identifying the MU and a is a coefficient 
which determines the range of recruitment. In particular, it is 
a = (ln RR)/n, with n the total number of MUs activated 
during the contraction and RR the percentage of time during 
which recruitment of MUs is present with respect to the total 
contraction time. The size principle [7] has been assumed for 
the recruitment order with the small and low CV MUs being 
recruited at the beginning of the contraction. Fatigue was not 
included in the simulations. The firing rate of each MU was 
increased linearly in time after recruitment with a slope of 10 
pps/s (pps = pulses per second). The minimum firing rate was 
8 pps (firing rate at the recruitment) and the maximum firing 
rate was 35 pp s. The mean of CV distribution was 4 m/s 
while the standard deviation was varied between 0.3 m/s and 
0.7 m/s. The CV distribution was a truncated Gaussian with 
minimum and maximum CV values 2 m/s and 7 m/s. 

 
Fig. 1 Example of a single differential signal generated by the model.           

a) Location of the MUs in the muscle and MU territories. b) Firing patterns 
of the active MUs (only one firing pattern every four) during a contraction 

with recruitment up to 75% of the contraction time. c) CV distribution 
(Gaussian with mean 4 m/s and standard deviation 0.7 m/s) normalized with 
respect to the distribution area. d) Generated single differential signal. The 

CV distribution shown in (c) is the distribution of the CVs of all the 65 
simulated MUs. Recruitment of these MUs progresses from low CV to high 

CV. 
 

Each simulation set consisted of 50 synthetic signals; for 
the generation of each signal i n the set t he locations of the 
MUs in the muscle were randomly selected (with uniform 
distribution in the detection volume) while the firing patterns, 
CV distribution and number of f ibers for each MU w ere 
constant for the e ntire set. The aim was to ob serve the 
influence of location of the MUs in the muscle on the 
estimated EMG variables when the other physiological 
parameters of interest were fixed. 

Simulated signals were processed with the same 
techniques as the real signals (see below). No noise was 
added to the synthetic signals. 

 

B. Experimental protocol 
Ten male healthy subjects with ages between 22 and 35  

years (mean ± std: 26.3 ± 4.3 years) participated in the study 
after giving informed consent. All the subjects were free from 
neuromuscular diseases. The muscle studied was the biceps 
brachii of the dominant arm. Torque was measured with a 
modular brace which incorporates two independent t orque 
meters (mod. TR11, CCT T ransducers, Torino, Italy), on 
each side of the brace. In each experimental session, the 
subject was asked to produce three maximal voluntary 
contractions (MVCs) of the duration of 2-3 seconds separated 
by two minute rest and was encouraged to exceed the 
previously reached maximum l evel (visual t orque 
biofeedback was given to the subject when exerting the 
MVCs). The maximum of the three MVCs was taken as 
reference. After the MVC measurement, the subject 
performed a training session consisting of three ramp 
contractions of the duration of three seconds with linearly 
increasing force between 0% and 80 % MVC. The desired 
force trajectory was displayed on a computer screen along 
with the output of the force transducers, providing real time 
biofeedback for the subject. The acceptable e rror band for 
force tracking was ±5% MVC. After the training session ten 
minute rest were given to the subject who was then asked to 
perform two additional ramp contractions as those performed 
during the training session but followed by a constant force 
contraction at 80% MVC lasting 11 seconds. The 80% MVC 
was s ustained by the subject with the same e rror band 
imposed du ring the ramp contraction (±5% MVC). During 
these two last contractions the EMG signals were recorded. 
Ten minute rest were given to the subject between the two 
contractions. The subject repeated the experimental session in 
two different days.  

In order to ob tain reliable e stimations of the EMG 
variables, surface EMG signals were detected with a linear 
array of 16 electrodes [11][13] ( silver bars 10 mm apart, 5 
mm long, 1 mm diameter). The EMG signals were amplified  
and band-pass filtered  (3 d B bandwidth: 10 Hz-500 Hz), 
sampled at 2048 Hz and converted in digital form by a 12 bit 
A/D converter. 

The c ontraction was divided in two intervals, the ramp 
and the constant force part. The ramp was defined as the time 
interval between the instant in which the subject exceeded the 
5% MVC and the instant in which the subject exceeded the 
75% MVC; t he c onstant force interval was defined as the 
interval beginning 0 .5 seconds after the ramp interval and 
lasting until the end of the contraction.  

 
III. RESULTS 

 
A. Simulations 

Fig. 2 shows MNF and CV versus time for two different 
recruitment strategies. Three realizations of the 50 
simulations performed are shown. The first strategy (left 
plots) corresponds to recruitment of MUs from the beginning 
to the end of the contraction, the second strategy (right plots) 
from t he beginning to the 50% of the c ontraction time. 
Estimated CV is increasing in all cases. MNF shows different 
behaviors during time, depending on the MU location in the 
muscle. It i s not possible to distinguish the two recruitment 
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conditions by looking at t he time pattern of MNF. The 
maximum in MNF curve is also shown for the three cases in 
the two conditions. It appears that this parameter has a very 
large variability which reduces its value as indicator of the 
end of the recruitment process. 

 
Fig. 2 Results from three (out of 50) signals obtained by simulating two 

different recruitment strategies. CV distribution standard deviation is 0.7 
m/s. Estimated MNF and CV are shown. The set of the three synthetic single 
differential signals in the two cases have been generated with the same CV 

distribution, MU sizes and firing pattern; only MU location is different in the 
three simulations. The end of recruitment is shown in the two cases as well 
as the MNF maximum point. The two cases represent different recruitment 

strategies; in the first case (left column) the recruitment of new MUs is 
present from the beginning until almost the end of the contraction (RR=95 in 
Eq. (1)) while in the second case (right column) recruitment ends at 50% of 
the contraction time (RR=50 in Eq. (1)). Note that MNF shows a pattern in 
time very similar in the two conditions and that the spread of the peaks of 

MNF is very large in both cases. 

 
Considering the entire simulation set, the maximum MNF 

value occurred at a time instant (mean ± std) of (61.0 ± 
15.1)%, (72.3 ± 24.0)% and (71.2 ± 22.2)% of the contraction 
time, for the recruitment until 50%, 75% and 95 % of the 
contraction time, when CV distribution standard deviation is 
0.7 m/s. For the case of CV distribution standard deviation of 
0.3 m/s we obtained that t he maximum point of MNF was, 
respectively at (49.0 ± 20 .5)%, (66.0 ± 31 .7)% and (57.4 ± 
22.0)% for recruitment until 50%, 75% and 95%. It was not 
possible, for either one of the CV distribution standard 
deviation values, to statistically distinguish (Student t-test for 
independent samples, p = 0.05), the recruitment until 75% 
and 95% of the contraction time, even with 50 cases. It was 
possible to statistically distinguish (Student t -test for 
independent samples, p = 0.05) between the recruitment until 
50% and 75% of the contraction time with the 50 realizations 
for both values of CV distribution standard d eviation (the 
difference was not statistically significant when less than 20 
realizations were used for the comparison).  

The linear r egression correlation coefficient (CC) 
between CV (which can be c onsidered a size principle 
parameter) and MNF in case of CV distribution standard 
deviation of 0.3 m/s was (mean ± std) 40.6 ± 27 .8, 42.9 ± 
25.7 and 53.5 ± 22.3 for recruitment until 50%, 75% and 95 
% of the contraction time. In case of CV distribution standard 
deviation of 0.7 m/s, CC was 77.2 ± 10 .2, 71.7 ± 15 .6 and 
81.1 ± 9 .9 respectively for r ecruitment until 50%, 75% and 

95 % of the c ontraction time. For small values of CV 
distribution standard d eviation n egative values of CC were 
even observed, indicating that MNF may decrease while 
global CV is increasing. This may happen when n ew MUs 
are recruited far from the electrodes. 

 
B. Experimental data 

In the e xperimental signals estimated CV always 
increases with force. MNF presents s ubject dependent 
behaviors, being constant or initially increasing and 
remaining stable for the last part of the contraction (Fig. 3). 
Five subjects showed an increasing MNF until a certain force 
level and then a constant value. Two subjects presented a 
constant MNF and two subjects s howed MNF increasing 
until the end of the contraction. In only one case a decrease of 
MNF (with increasing CV) was observed. In the seven cases 
of non-constant or decreasing MNF, the MNF maximum was 
located between 40% and 75% MVC.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3 Representative results obtained during the ramp part of the 

contraction from two of the 10 investigated subjects. MNF and CV are 
shown versus force level. The three curves represent the mean  ±  one 

standard deviation of the four measurements for each subject. a) MNF is 
almost constant during the contraction while CV is increasing, b) MNF is 
increasing until about 40% MVC and then is almost constant while CV is 
increasing for the entire force range. The other subjects showed a behavior 

similar to one or the other of those reported in this figure. 
 
Fig. 3 reports representative results obtained from t he 

experimentally detected signals and Fig. 4 shows the scatter 
plot between CV and MNF for one of the subjects for the 
ramp and the constant force part of the contraction. Note the 
higher correlation between the two v ariables during the 
constant force contraction. CCs between CV and MNF close 
to unity were found in all the cases during the constant force 
contraction (mean ± std: = 81.0 ± 12.3, N = 38) while much 
lower values were obtained du ring the ramp contractions 
(mean ± std: 54.1 ± 32.5, N = 38). 

 
 

IV. DISCUSSION 

 
It has been suggested that the recruitment of progressively 

larger  MUs with higher CVs should determine an increase of 
MNF and MDF, with the maximum value of the two 
variables indicating the e nd of the recruitment phase. This 
hypothesis is based on the claimed linear correlation between 
MNF or MDF and CV during the recruitment phase. 
However, the theory of volume conductor and the features of 
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the EMG variable e stimators indicate that t he relationship 
between recruitment and spectral features may be masked by 
anatomical or geometrical factors and estimation errors. A 
precise indication of the limitations of surface EMG spectral 
analysis in recruitment strategy investigation was lacking in 
literature. In the present study the simulation analysis aimed 
at investigating the variability of EMG variables due solely to 
the random location of the MUs in the muscle, an approach 
which has never been adopted before. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Scatter plots of CV versus MNF for the four contractions 
performed by one of the subjects during the ramp (a) and the constant force 
(b) contraction for the four trials performed. CCs are also reported. Analysis 
window of 250 ms without overlapping in case of sustained force portion of 
the contraction, overlapping of 249 samples in case of ramp force part (in 

this case only one value every 64 is shown for clarity). Each symbol refers to 
one trial. 

 
Depending on MU location in the muscle it was evident 

that the correlation between CV and MNF (or MDF) during 
recruitment m ay be poor with the c onsequence that t he 
maximum point of MNF (or MDF) does not necessarily 
indicate the e nd of recruitment because of different ti ssue 
filtering for different MUAPs. A decrease of spectral 
variables with recruitment of MUs with progressively higher 
CVs may even occasionally occur. The large variability of 
the position of the maximum point of MNF obtained in the 
simulations was indirectly confirmed by the e xperimental 
data since large variability was observed in the position of the 
MNF maximum i n recordings from a muscle which is 
supposed to recruit MUs up to 80% MVC (the maximum 
force level reached in the present study). Also the CCs 
obtained in experimental signals were well in agreement with 
those obtained in the simulations. On the basis of our 
findings, an index based on MNF (or MDF) maximum does 
not seem to reflect phenomena related to central control.  

 
V. CONCLUSION 

 

The main conclusion of this paper is that surface EMG 
global variables give poor indications about MU recruitment 
strategies and considerable c aution should be used in the 
interpretation of these variables as indicators of CNS muscle 
force control strategies. The presented data do not support the 

establishment of a general relationship between spectral 
variables and force or recruitment strategy. 
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